Stationary and pulsating dissipative light bullets from a collective variable approach.
نویسندگان
چکیده
A collective variable approach is used to map domains of existence for (3+1)-dimensional spatiotemporal soliton solutions of a complex cubic-quintic Ginzburg-Landau equation. A rich variety of evolution behaviors, which include stationary and pulsating dissipative soliton dynamics, is revealed. Comparisons between the results obtained by the semianalytical approach of collective variables, and those obtained by a purely numerical approach show good agreement for a wide range of equation parameters. This also demonstrates the relevance of the semianalytical method for a systematic search of stability domains for spatiotemporal solitons, leading to a dramatic reduction of the computation time.
منابع مشابه
Spatiotemporal optical solitons in nonlinear dissipative media: from stationary light bullets to pulsating complexes.
Nonlinear dissipative systems display the full (3+1)D spatiotemporal dynamics of stable optical solitons. We review recent results that were obtained within the complex cubic-quintic Ginzburg-Landau equation model. Numerical simulations reveal the existence of stationary bell-shaped (3+1)D solitons for both anomalous and normal chromatic dispersion regimes, as well as the formation of double so...
متن کاملOptical bullets and double bullet complexes in dissipative systems.
We show that optical light bullets can coexist with double bullet complexes in nonlinear dissipative systems. Coexistence occurs for a relatively large range of the system parameters, and is associated with either marginal stability or bistable existence of the two dissipative soliton species. In the case of marginal stability, spontaneous transformations of single bullets into double bullet co...
متن کاملOptical bullets and "rockets" in nonlinear dissipative systems and their transformations and interactions.
We demonstrate the existence of stable optical light bullets in nonlinear dissipative media for both cases of normal and anomalous chromatic dispersion. The prediction is based on direct numerical simulations of the (3+1)-dimensional complex cubic-quintic Ginzburg-Landau equation. We do not impose conditions of spherical or cylindrical symmetry. Regions of existence of stable bullets are determ...
متن کاملBifurcations from stationary to pulsating solitons in the cubic–quintic complex Ginzburg–Landau equation
Stationary to pulsating soliton bifurcation analysis of the complex Ginzburg–Landau equation (CGLE) is presented. The analysis is based on a reduction from an infinite-dimensional dynamical dissipative system to a finite-dimensional model. Stationary solitons, with constant amplitude and width, are associated with fixed points in the model. For the first time, pulsating solitons are shown to be...
متن کاملLight bullets and dynamic pattern formation in nonlinear dissipative systems.
In the search for suitable new media for the propagation of (3+1) D optical light bullets, we show that nonlinear dissipation provides interesting possibilities. Using the complex cubic-quintic Ginzburg-Landau equation model with localized initial conditions, we are able to observe stable light bullet propagation or higher-order transverse pattern formation. The type of evolution depends on the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 79 2 Pt 2 شماره
صفحات -
تاریخ انتشار 2009